Z BioInf
Skocz do: nawigacja, szukaj
Linia 61: Linia 61:
 
| Gleevec
 
| Gleevec
 
| Novartis
 
| Novartis
|BCR-ABL
+
| BCR-ABL, c-ABL, PDGFR, c-KIT, DDR1
c-ABL
+
| przewlekła białaczka szpikowa, przewlekła białaczka eozynofilowa, guzowate włókniakomięsaki skóry, nowotwory podścieliskowe przewodu pokarmowego, zespół hipereozynofilowy
PDGFR
 
c-KIT
 
DDR1
 
| przewlekła białaczka szpikowa
 
przewlekła białaczka eozynofilowa
 
guzowate włókniakomięsaki skóry
 
nowotwory podścieliskowe przewodu pokarmowego
 
zespół hipereozynofilowy
 
 
|}
 
|}
  

Wersja z 11:46, 7 maj 2014

Kinazy białkowe

Kinazy białkowe to nadrodzina białek enzymatycznych klasyfikowana jako fosfotransferazy (numer EC 2.7). Katalizują one transfer reszty fosforanowej z trifosforanu nukleozydu purynowego (ATP lub GTP) na specyficzne substraty białkowe. Zostały podzielone na cztery główne klasy, w oparciu o kryterium aminokwasu akceptorowego reakcji fosforylacji: serynowo/treoninowe, tyrozynowe, histydynowe (fosforylują również reszty lizyny i argininy) oraz asparaginianowo/glutaminianowe [1]. Istnieją również kinazy o podwójnej specyficzności – fosforylujące reszty seryny i treoniny, ale również tyrozyny, np. kinaza kinazy aktywowanej mitogenem.

Mechanizm reakcji fosforylacji polega na ataku nukleofiowym tlenu grupy hydroksylowej na gamma-fosforan ATP. Fosforylowana grupa hydroksylowa jest aktywowana przez katalityczną zasadową resztę asparaginianu. Fosforylacja jest stabilną modyfikacją, powodującą znaczące zmiany w strukturze, aktywności oraz lokalizacji białek substratowych kinaz na drodze m.in.: allosterycznej regulacji czy tworzenia miejsca oddziaływania. Usunięcie reszty fosforanowej wymaga hudrolizy wiązania estrowego, które jest katalizowane przez fosfatazy białkowe. Zarówno kinazy, jak i fosfatazy białkowe charakteryzują się mniejszą lub większą specyficznością substratową. Około 30 % białek eukariotycznych ulega fosforylacji przez kinazy białkowe.

Schemat 1: Specyficzność aminokwasowa kinaz białkowych

Wszystkie kinazy białkowe łączy homologia katalitycznej domeny kinazowej zbudowanej z 250-300 reszt aminokwasowych oraz struktura dwupłatowa cząsteczki enzymu [2]. Struktura oraz aminokwasy katalityczne domeny kinazowej są wysoce konserwowane. Centrum aktywne enzymu utworzone jest przez reszty aminokwasowe pochodzące od obydwu płatów: N-terminalnego i C-terminalnego, a także rejonu zawiasowego. Płat N-terminalny składa się z pięciu antyrównoległych β-wstążek (β1-β5) i jednej α-helisy (αC), natomiast płat C-terminalny zbudowany jest głównie z α-helis. Domenę kinazową podzielono na dwanaście subdomen pierwszorzędowych elementów struktury [2, 3]. Sudomeny I, II i III kotwiczą reszty fosforanowe ATP. Subdomena I zawiera pętlę glicynową (tzw. pętla P) z konserwowanym motywem GXGXXG, która uczestniczy w wiązaniu cząsteczki ATP. Subdomena V tworzy hydrofobową kieszeń otaczającą pierścień adeniny. Subdomena VI zawiera pętlę katalityczną z katalityczną resztą asparaginianu. Subdomena VII obejmuje wysoce konserwowany tryplet DFG, będący częścia pętli aktywacyjnej, chelatujący kationy magnezu. Aminokwasy subdomen VIII (z wysoce konserwowanym motywem APE), X oraz XI uczestniczą w rozpoznaniu i wiązaniu substratów białkowych. Zgodnie z analizą przeprowadzoną przez Hanksa i Huntera w 1995 roku w całej nadrodzinie wyróżnić możemy 12 niezmiennych aminokwasów (numeracja aminokwasów dla domeny kinazowej PKA): Gly50 oraz Gly52 w subdomenie I, Lys72 w subdomenie II, Glu91 w subdomenie III, Asp166 i Asn171 w subdomenie VI, Asp184 i Gly186 w subdomenie VII, Glu208 w subdomenie VIII, Asp220 i Gly225 w subdomenie IX, a także Arg280 w subdomenie XI.

Kinazy białkowe kodowane są przez ca. 1.7% wszystkich ludzkich genów (518 genów, [4]). Odgrywają one kluczową rolę w fundamentalnych procesach komórkowych takich jak: cykl komórkowy, podziały komórkowe, różnicowanie czy apoptoza.

Przykłady kinaz białkowych serynowo/treoninowych (EC 2.7.11) to:

  • kinazy AGC, np.: PKA – kinaza białkowa regulowana cAMP, PKG – kinaza białkowa reglowana cGMP, PKB (znana również jako AKT), PKC – kinazy białkowe zależne od wapnia i kalmoduliny);
  • MAPK – kinazy białkowe aktywowane mitogenem;
  • CK2 – kinaza kazeiny II;
  • CDK – kinazy białkowe zależne od cyklin;
  • kinazy białkowe Mos/Raf;
  • kinaza rybosomalnego białka S6;
  • kinaza syntazy glikogenu (GSK);
  • kinazy białek GPCR (GRK lub GPCRK);
  • kinaza receptora b-adrenergicznego.

Białka o aktywności kinaz tyrozynowych (EC 2.7.10) w znakomitej większości uczestniczą w przesyłaniu sygnałów zewnątrzkomórkowych. Dzielone są na dwie główne klasy: receptory transmembranowe o aktywności kinaz tyrozynowych RTK (receptor tyrosine kinases) oraz kinazy tyrozynowe związane z receptorami (cytoplazmatyczne kinazy tyrozynowe). Przykłady RTK to:

  • EGFR – receptor naskórkowego czynnika wzrostu (zwany również ERBB);
  • PDGFR – receptor płytkopochodnego czynnika wzrostu;
  • FGFR – receptor czynnika wzrostu fibroblastów;
  • VEGFR – receptor śródbłonkowego czynnika wzrostu (KDL, FLT1, FLT4);
  • receptor TGFbeta;
  • TRK – receptory neuronalnych czynników wzrostu (neurotrofin);
  • receptor insuliny;
  • IGFR - receptor insulinopodobnego czynnika wzrostu.

Natomiast przykłady tyrozynowych kinaz związanych z receptorami włączają:

  • kinaza Abelsona (ABL);
  • kinazy Janusa (JAK);
  • kinazy Src;
  • kinaza ogniskowo-adhezyjna FAK (PTK2);
  • kinaza Brutona BTK;
  • kinaza C-Src (CSK);
  • ZAP70 – kinaza o ciężarze 70 kDa związana z łańcuchem zeta CD3 kompleksu receptora T (TCR).

Kinazy białkowe w terapii ukierunkowanej molekularnie

Połowa znanych ludzkich genów kinaz jest powiązana z nowotworami i innymi chorobami [5, 6]. W konsekwencji kinazy białkowe w krótkim czasie stały się atrakcyjnym celem terapii przeciwnowotworowych. Kinazy białkowe są obecnie drugą co do ważności, zaraz po receptorach sprzężonych z białkami G (GPCR, ang. G-protein coupled receptors), grupa białek stanowiących cel ukierunkowanych molekularnie terapii przeciwnowotworowych [7]. Ponad 20 tyrozynowych kinaz białkowych znajduje się już na etapie badań onkologicznych nad możliwością wykorzystania ich jako cele molekularne [8]. Przykłady najważniejszych kinaz wykorzystywanych już jako cele molekularne to: BCR-ABL (ang. breakepoint cluster region - Abelson), rodzina EGFR (ang. epidermal growth factor receptor) czy VEGFR (ang. vascular endothelial growth factor receptor) [9].

Hamowanie aktywności domeny kinazowej okazało się cenną strategią walki z chorobami nowotworowymi, czego dowodzi kliniczny sukces kilku niskocząsteczkowych inhibitorów kinaz (Tabela 1). W wielu ośrodkach na świecie poszukiwane są związki niskocząsteczkowe, które mogłyby służyć jako efektywne inhibitory tych enzymów, a w perspektywie również leki przeciwnowotworowe. W ostatnich latach ponad 100 niskocząsteczkowych związków znalazło się na różnych etapach testów klinicznych [10, 11]. Ponad 20 z nich to blokery kieszeni ATP enzymu [8]. Kilka inhibitorów kinaz zostało zatwierdzonych przez Agencję Żywności i Leków (US Food and Drug Administration) jako leki przeciwnowotworowe [12, 13, 14, 15].

Tabela 1: Niskocząsteczkowe inhibitory kinaz białkowych jako leki przeciwnowotworowe
inhibitor lek firma znane cele molekularne * wskazanie terapeutyczne
imatinib Gleevec Novartis BCR-ABL, c-ABL, PDGFR, c-KIT, DDR1 przewlekła białaczka szpikowa, przewlekła białaczka eozynofilowa, guzowate włókniakomięsaki skóry, nowotwory podścieliskowe przewodu pokarmowego, zespół hipereozynofilowy

Literatura

  1. Gerhard Krauss, Biochemistry of Signal Transduction and Regulation. 4th Edition. Copyright 2008 WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim
  2. Hanks, S.K.; Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. The FASEB Journal, 1995, 9 (8), 576-596.
  3. Johnson, L.N.; Lowe, E.D.; Noble, M.E.M. The structural basis for substrate recognition and control by protein kinases. FEBS Lett., 1998, 430 (1-2), 1-11.
  4. Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science, 2002, 298 (5600), 1912-1934.
  5. Al-Obeidi, F.A.; Wu, J.J.; Lam, K.S. Protein tyrosine kinases: Structure, substrate specificity, and drug discovery. Peptide Science, 1998, 47 (3), 197-223.
  6. Knuutila, S.; Björkqvist, A.M.; Autio, K.; Tarkkanen, M.; Wolf, M.; Monni, O.; Szymanska, J.; Larramendy, M.L.; Tapper, J.; Pere, H.; El-Rifai, W.; Hemmer, S.; Wasenius, V.M.; Vidgren, V.; Zhu, Y. DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am. J. Pathol., 1998, 152 (5), 1107-1123.
  7. Cohen, P. Protein kinases - the major drug targets of the twenty-first century? Nat Rev Drug Discov, 2002, 1 (4), 309-315.
  8. Traxler, P. Tyrosine kinases as targets in cancer therapy - successes and failures. Expert Opinion on Therapeutic Targets, 2003, 7 (2), 215-234.
  9. Levitzki, A. Protein Kinase Inhibitors as a Therapeutic Modality. Accounts of Chemical Research, 2003, 36 (6), 462-469.
  10. Li, R.; Stafford, J.A. Kinase Inhibitor Drugs. Wiley 2009.
  11. Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov, 2012, 11 (11), 873-886.
  12. Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. Protein Kinase Inhibitors: Insights into Drug Design from Structure. Science, 2004, 303 (5665), 1800-1805.
  13. Giordano, S.; Petrelli, A. From Single- to Multi-Target Drugs in Cancer Therapy: When Aspecificity Becomes an Advantage. Curr. Med. Chem., 2008, 15 (5), 422-432.
  14. Janne, P.A.; Gray, N.; Settleman, J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov, 2009, 8 (9), 709-723.
  15. Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer, 2009, 9 (1), 28-39.